2次元FDTD法を用いた電離圏空間構造に 関する研究

1.はじめに

地球の上層には,窒素や酸素などの分子や原子が電 離することにより生じた,イオンと自由電子からなる 電離気体 (プラズマ) 粒子が存在している.電波伝搬 に影響を及ぼす電離気体粒子が存在する領域を電離圏 と呼ぶ.したがって,電離圏は高度 50~2000km の範 囲と考えられ,高度によっていくつかの領域に分けら れる.電離圏の電子密度は太陽からのX線や紫外線, あるいは宇宙線等のエネルギーによって生成される F 領域(140km以上)で最大になる.F領域の下には太 **陽の**軟 X 線によって生成される E 領域 (90~140km) がある. E 領域には通常の E 領域の他に厚さ数 km 以 下のスポラディック E 層と呼ばれる局地的, 突発的に 発生する電子密度の大きい電離圏がある(以下 Es 層 と表記する). Es 層は強い電子密度勾配があることか ら,様々なプラズマ不安定が起きていると考えられる. そのため, Es 層は一様均一なものでなく, パッチ状や スケールの小さい不規則構造を伴うことが多いと考え られている.また, Es 層発生後に沿磁力線イレギュラ リティ (Field-Aligned Irregularities;以下 FAI と表記 する)が確認されている.中緯度E領域FAIを生成す ると考えられている Gradient-drift 不安定は,電子密 度勾配と外部電場 E,地球磁場 B との $E \times B$ ドリフ トによって発生する.FAIの出現は Es 層の発生との 相関が高く,電子密度勾配は Es 層出現後, Es 層の不 規則な疎密構造が磁力線に沿って引き伸ばされ形成す ると考えられている.E領域の下にD領域がある.D 領域は高度 50~90km の範囲で,この領域のプラズマ はライマン α 線や硬X線によって生成される.F領域 の最大電子密度となる上側の領域をトップサイド,さ らにその上側をプラズマ圏と呼び,これらは磁気圏へ とつながっていく.

2. FDTD 法による電離圏空間構造の推測

電離圏中の電波伝搬特性を解明することは,安定した通信を確保するために必要不可欠である.電離圏 E, F領域のように電子密度が高度とともに変化する不均 質媒質中の電波伝搬特性を解析するために,本研究では自由な空間構造を持つ領域の解析が可能な FDTD シミュレーションを用いた.広大な領域のシミュレー

0755018 吉野 修二郎

ションを行うため空間変化を2次元に限定し、プラズ マを扱うことのできる 2 次元 FDTD コードを開発し, そのシミュレーションコードを用いて電離圏プラズマ 中(E領域)の電波伝搬を再現して伝搬特性の解析を 行う.また, Es 層や FAI などの電離圏空間構造は通信 を始めとする電波伝搬に大きな影響を与えるか、その 構造は詳しくわかっておらず,その観測手法も確定さ れていない. Es 層や FAI などの電離圏空間構造が電 波伝搬に与える影響を調べることで逆にそれらの空間 構造を推定できるのではないかと考えた.そこで,Es 層や FAI を模した層状モデル・電子雲モデルを置いて 2次元シミュレーションを行い,電波伝搬に与える影 響を詳細に調べた.その際,電波源の位置,周波数な どを様々に変化させてシミュレーションを行うことで 電波伝搬に異なる影響を与える.これらのシミュレー ションで得られた受信データを比較し,解析すること で空間構造が推測できると考えられる.

3. 電離圏中の電波伝搬シミュレーション

まず始めにシミュレーション領域を比較的狭い範囲に 設定し,電波伝搬特性の基本的な物理過程を確認した. 電離圏モデルとして層状モデル・電子雲モデルを仮定し, それぞれのモデルが電波伝搬にどのような影響を及ぼ すのかを比較・検証した.それぞれのモデルは,背景プ ラズマとして高度が上昇するにしたがって指数関数的 に増加し,最高高度40kmで最大値1.00×10¹⁰[m⁻³] となる電子密度を設定している.また,電離圏モデル として仮定した層状モデルは,高度25kmから5kmの 厚さで電子密度 0.75 × 10¹⁰[m⁻³] のプラズマを一様に 分布させている.このプラズマ層を以後 Es 層と呼ぶ. 一方,電子雲モデルは,モデルの中心を高度25kmの 左端から右端までの位置に 7.5km 間隔で設定する.電 子雲の電子密度分布は最大電子密度 1.00 × 10¹⁰ [m⁻³] のガウス分布を用いて,電子雲中心にいくほど電子密 度の高いプラズマを設定してある.電子雲の大きさは 短辺 2km, 長辺 3km の楕円形である. ぞれぞれの図 において (a) は層状モデル, (b) は電子雲モデルの場合 を示す.図1は電子密度分布と電界強度の高度分布を 求めるラインを表示,図2はt = 250[µsec]の時点の電 界を波源の電界を 0dB とした相対値で表示し,図3は

電界強度の高度分布を表示している.シミュレーショ ンを行った結果,層状モデルではEs層以下の高度で 干渉波が見られ,Es層上空で一旦電界強度が減少し, 屈折波の影響で再び電界強度が増加する.この屈折波 の影響が現れる高度・強さなどは,発信源と観測点の 位置関係に依存していると考えられる.一方,電子雲 モデルでは電子雲中で電界強度が減少し,電子雲上空 で干渉波が見られると同時に電界強度が増加し,その 後電界強度が減少する.この干渉波の影響は発信源と 観測点の位置関係に加えて,発信周波数に依存してい ると考えられる.

図 3: 電界強度-高度分布

この結果から,位置や周波数の異なる発信源からの 電波を受信し,Es層・電子雲上空の電界強度変化を詳 しく解析すれば,電界強度の高度分布から電離圏空間 構造を推測できると考えた.発信源の位置を変えてシ ミュレーションを行った場合,層状モデルでは発信源 の位置の違いから,高度25km以上の電界強度変化に 違いが見られ,Es層直上の電界強度は透過する電波 に,そのさらに上空では屈折して回り込む電波に依存 する.一方,電子雲モデルでは,層状モデルの場合と 同様,電子雲上空の電界強度変化を詳しく調べること で,直接波・屈折波両方の特徴を得ることができる.発 信源と観測点間で直接波は近い位置の電子雲,屈折波 は遠い位置の電子雲の影響を反映しているが,層状モ デルの場合と異なり電子雲で屈折した電波の伝搬方向 の変化が複雑なため,電界強度の高度分布に現れる干 渉波も複雑なものとなっている.

電離圏のような磁化プラズマ中を伝搬する電波は,電 磁界成分が磁場に対して左方向に回転する特性波(L 波)と右方向に回転する特性波(R波)に分けられ, それぞれ異なる伝搬特性を持つ.特に R 波の伝搬特性 は電子密度が希薄な場合でも影響を受ける.本研究で 使用している電波は,主に外部磁場に対して平行に伝 搬する波であり,L波とR波を合成した波であると考 えられる.電離圏空間構造の推測の際重要な情報であ る干渉波は,発信源と電離圏モデルとの位置関係以外 に発信周波数によっても変化する,発信源の周波数を 変えてシミュレーションを行った場合,層状・電子雲 モデルともに,プラズマ中を伝搬する電波の電界強度 変化は,サイクロトロン周波数,プラズマ周波数及び 発信周波数の関係に依存している.特に Es 層・電子 雲を透過する際の電界強度変化はR波の伝搬特性に大 きく影響される.R波の伝搬特性は電子密度の影響を 強く受けるため,電波の伝搬特性をL波・R波に分け て解析することで電離圏空間構造の推測に応用できる 可能性を示した.

4.まとめと今後の課題

本研究で行ったシミュレーションの結果から,発信 源の位置や周波数を様々に変化させることで層状・電 子雲モデルが電波伝搬に与える影響に大きな違いが見 られ,層状・電子雲の構造を推測できる可能性を示す ことができた.

今後は更に多様な電離圏モデルの構造,発信源の位置,周波数の場合についてシミュレーションを行い, 試行回数を増やし比較・検証を行う必要がある.特に 電離圏磁化プラズマ中の電波伝搬特性は周波数によっ て大きく異なるため,周波数を変化させたシミュレー ションが効果的であると考えられる.