7-3 スポラディックE層に関する2次元FDTDシミュレーション

電磁波工学研究室 0412062藤田 建豪

1.はじめに

電離圏はその高度によって F,E,D 層に分けられる. E 層には,通常の E 層の他にスポラディック E 層(以下 Es と表記する)と呼ばれる薄い層がある.Es 層はウィンドシアによって集められたイオンでできているため,非定常的に存在する.本研究では,Es 層のモデルを用いた電波伝搬のシミュレーションを行う.

2. Es 層に関するシミュレーション

本研究では, Es 層のモデルを用い, プラズマ中の電 離層,電子雲の空間構造のスケールが電波伝搬に与え る影響を調べる.電離層の空間変化を2次元に限定し, 2次元 FDTD 法を用いたシミュレーションを行う.入 射波として周波数 1MHz, 100kHz の平面波を仮定し, Es 層のモデルとして波状電離層,入射波の波長と同程 度の電子雲モデル,波長に比べ十分小さい電子雲モデ ルを用いる.小さい電子雲を用いたシミュレーション では,平面状電離層モデル(図1(a))と,電子雲を短い 間隔(波長の1/10)に配置したEs 層モデル(図1(b)), および電子雲を長い間隔(波長と同程度)で配置した モデル(図1(c))を比較する.

3. シミュレーション結果

入射波長より十分小さい電子雲モデルを用いたシミュ レーションでは,入射波として周波数100kHzの平面 波を仮定した.入射波長は3kmであり,電子雲の直径 は波長の 1/10 の 300m とした. 図 2 に小さい電子雲モ デルのシミュレーションにおける電波伝搬の様子を示 す.この図は,電界強度の空間分布を表している.波長 より十分短い間隔(300m)に電子雲を配置した場合で は,水平方向の空間構造の影響をほとんど受けず,平 面状電離層と同じような伝搬特性を示した(図2(b)). しかし,電子雲の間に隙間が存在するにも関わらず平 面状電離層よりも電波の減衰が大きいという現象が見 られた.一方,入射波長と同程度の間隔(3km)に電 子雲を配置した場合,電子雲の周辺電波伝搬が影響を 与えている様子が確認できる (図 2(c)). このことか ら波長に対して十分小さい電子雲であっても電波伝搬 に影響を与える事がわかった。

4.まとめと今後の課題

本研究では,様々な Es 層モデルを仮定した場合の 電波伝搬特性について,2次元 FDTD シミュレーショ ンを用いて検証を行った.その結果,電離層や電子雲 のわずかな空間構造の変化が電波伝搬に影響を与える ことが確認できた.一方,電子雲の間隔を波長より短 くした場合に見られた電波の減衰には,外部磁場が影 響していると考えられる.そこで外部磁場のないシミュ レーションを行ったところ,平面状電離層の方が電子 雲モデルよりも電波の減衰が大きい結果になった.こ の現象については電子雲内部の電波伝搬特性などさら に詳しく解析する必要がある.

図 1: 電子雲モデル図

図 2: 小さい電子雲モデルのシミュレーションにおけ る電波伝搬の様子